NASA TT F-10,391

GPO PRICE $

CFSTI PRICE(S) $
|.00
50

Hard copy (HC)

Microfiche (MF)

# 863 July 66

STABILITY RESEARCH ON PARACHUTES USING DIGITAL AND
ANALOG COMPUTERS

R. Ludwig

Translation of: '"Stabilitdtsuntersuchungen an Fallschirmen mit
Hilfe eines Digital- und Analogrechners." Paper presented at
the International Symposium on Analog and Digital Techniques

Applied to Aeronautics, Liege, Belgium, Sept. 9-12, 1963
(13 pp. and 6 Illus.). Deutsche Forschungsanstalt
fur Luft- und Raumfahrt E.V., Braunschweig, 1963.

o
[+
[}
= (ACCE Q MB )
z {THRU)
Q
b ;'O
o
; {PAGES) (Cﬁ)
3 /
<
LY
(NASA CR OR TMX OR AD NUMBER) (CATEGORY)

» o »
»

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
WASHINGTON NOVEMBER 1966



NASA TT F-10,391

STABILITY RESEARCH ON PARACHUTES USING DIGITAL AND
ANALOG COMPUTERS

R. Ludwig

The computation of numerous examples of a special type
(numerically about 80 cases were considered) shows that the
oscillations of a parachute show a certain typical type of
behavior which is characteristic of nonlinear oscillations.
A qualitative agreement with experiments was achieved in a
number of respects. Quantitative comparative investigations
still could not be carried out because until now it still
was not possible to carry out drop experiments with chutes
of the considered type.

In addition to the information which the experimenter
obtains on different properties of parachute oscillation, it
appears to be particularly important that this is a case where
for the investigation of the dynamic behavior a nonlinear
computation is the only approach which can give an unobjec-
tionable description of the process. The available experi-
mental data, such as wind tunnel measurements for asymmetri-
cal chutes in 6 components, measurements of the entrained
air mass, etc., should be used in further broadening of theo-
retical investigations.

1. Introduction /1%

In the consideration of dynamic problems in flight mechanics, it was cus-
tomary at an earlier time to linearize the problem, that is, the effect of
small perturbations was considered. The system of linear differential equa-
tions following from this approach also had the pleasant property that with a
relatively minor number of computations it was possible to draw conclusions
concerning frequencies and attenuations. The admissibility of linearization in
many cases was questionable from the beginning. Now, on the other hand, in
most cases there has been a changeover to nonlinear computations. It is accept-
ed, thus, that the volume of computations will be very greatly increased and
that it scarcely is possible to draw any general conclusions; conclusions can
be drawn only from numerous examples in which certain parameters are varied.
Only by use of the modern tools of analog and digital computers has it become
possible to compute the dynamic problems of flight mechanics in this universal-
ity.

In the investigation of the dynamic stability of parachutes, which will be

*/Numbers in the margin indicate pagination in the original foreign text.
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discussed here, until now work always has begun with linearized equations of
motion. Even though the first publication known to the author had already ap-
peared in 1918 [1], a communication published by W. G. S. Lester (1962) [3]
made no mention of it. As will be assumed here in advance, the result of lin-
earization in this case is particularly complicated. The differential equation
for the perturbation of velocity is split off from the other differential equa-
tions and gives a monotonic attenuation of a perturbation, but not a periodic
attenuation with the frequency of the oscillating chute. Here, this means that
linearization, regardless of whether the application of the theory of small
oscillations is admissible, leads to a deficient description of the physical
behavior.

From the point of view of parachute technology, the attainment of good
dynamic stability is of great importance. Regardless of the objective of the
chute —- whether for saving a pilot, for ejection, for braking the landing of
an aircraft or as a chute for stabilizing any kind of flight vehicle -- in all
cases an insufficient stability will at least lead to difficulties or even de-/2
stroy the real purpose of the chute.

Moreover, the assumption of small perturbations also is scarcely realized
in practice. The influence of a gust on a stably falling chute very easily can
lead to deflections which no longer justify a linearizatiom.

The aerodynamic values for resistance (drag), shear and moment in depend-
ence on angle of attack, needed for computations, as known from wind tunnel
measurements, likewise show a behavior which does not admit a linearized treat-
ment, as is customary in flight mechanics, for example

Cy = Cy + My A
0 Te

because in part acy/aa even varies in sign.
£9

For the model calculations, which will be reported on here, the so-called
personnel guide surface parachute will be used. For this parachute, whose pro-
totype was developed during the Second World War by Prof. Heinrich at the Aero~
nautical Institute in Stuttgart, in Germany (Prof. Madelung) we have American
wind tunnel measurements which were carried out at the Institute by Prof. Hein-
rich (University of Minnesota, USA).

In the numerous computed examples, we investigated the dependence of dif-
ferent parameters, such as the influence of the length of the shroud lines, the
variation of the mass of the entrained air, and the density of the surrounding
air (or altitude). Finally, the stable state of oscillation also was consider-
ed for the case in which, in a certain neighborhood of the angle of attack zero,
the moment is not restoring (that is, BCM/Ba varies in sign in the correspond-

ing region).



2. Notations

A, V, V., v, [m/sec]
v [m/sec]
B o [sec™}
G =msg [kg]
w [kg-secz/m]
m [kg-sec’/m]

i [1]

S (1]
Y (1]
o [1]
x

’ {K [kgom-secz, m]

s [m]
Y [kgl
[kg]

W kgl
Q kgl
M [kgem]
Caps CQ, Cy [1]
F = R%p [m%]
R [m]

{3
velocity vector, sum of velocity,
components in a coordinate sys-

tem related to the parachute

stable speed of descent

angular velocity

load on the parachute
mass of the load
air mass entrained by shroud

ratio of the entrained air mass
to the mass of the load

angle of inclination of trajectory
longitudinal angle of inclination
angle of attack

moment of inertia, radius of the
shroud

distance from midpoint of shroud
to point of application of load

internal force
external force
resistance
shear

moment

resistance, shear and moment of
shroud

reference plane of parachute
shroud for the air force

radius of the parachute shroud /4



t [sec]

time

Xy, ¥ [m] = coordinates of trajectory in a
coordinate system related to the
ground

g; [m/secz] = acceleration of gravity

2,4 . .
g [kgesec”/m'] = air density

The time derivatives are denoted by a dot.

Subscripts: K = shroud; L = load.

3. Equations of Motion

The equations of motion will only be considered briefly [5]. The premises
are:

a) The shroud-load system is rigid.

b) The motion occurs in a vertical plane passing through the axis of the
chute.

¢) The shroud entrains an air mass which is to be regarded as a sluggish
but not as a heavy mass; it will be called the apparent (as in English) or en-
trained mass. On the other hand, the mass of the chute can be neglected.

d) The chute is acted upon by aerodynamic forces, resistance in the direc-
tion of the trajectory and the shear perpendicular to ityand an aerodynamic mo-
ment about an axis perpendicular to the plane of the trajectory. On the load,
there should be only a negligibly small resistance, but no shear and no moment.

Now we will consider the force equations for the shroud and load separate-
ly (Figure 1):

/5
L ] — v
", (."OK * C‘_”‘/ék) = T+ ) W
. - U “
m, (0 + & ></0)_.f = I *lo;_ ) )

and the equation of moment, related to L in a coordinate system related to the
parachute



Figure 1. Notations.
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It follows from the premise of rigidity of the shroud-load system that:

=

(3.1

(3.2)

(4)



e =Ve 0 (8 Vg -V =msw G809
from the figure we also have the geometrical notations
"9’=2/'+»~( -—-‘Zf + l
N K K ) ‘ (7a)
/ = - ]

As the operating external forces

’PKy = —.l\/ ces Xy = Q sin o, ) ’PKU =W sin N~ Q cos Qe ’ (8)
T |

m ( COS?& = - - '
B, =9 | "B-B" g sind } -
Then we put the aerodynamic forces and moments in the usual form: 16
=S Fy?
W=2FYle, a0 |
QA =5
Q= 3Fvlcqaa
% o 2
l ,:3-
\‘.\ 3 F 2Ry Cy(dg) (10)

If we substitute equations (4)-(10) into equations (1)-(3) and, in addi-
tion, introduce differential.equations for the trajectory of the load and
shroud, we obtain fifteen values for the complete description of the dynamic be-
havior of the chute, namely, for the motion of the load:

= 4w
£

N SR o Lt Sdunde /

and for the motion of the shroud:

6
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We now have a system of 6 differential equations and 9 algebraic notations.

('m‘_.+- r'nK)(\?x - a)vb) + mKscoz

= ml_g cos - §Fy* [c“,m“) cos e, + ca(ak)sin«k‘] }

(11)
-.!-»,;v . *
(" + i ,;éwngi-tovx ) —mysa

= -m gsin +3F Y3 g (e sindy - g o (12)

. s 2 2y » h y . . - = Z "
'”k(tk +5 ) w - mks(vg*o"vx)“ _sz'. 2 ZRVI\ CMQS‘K)) (13)
P = @ , (14)
. X =V wsy (15)
y = -vsmp , 16
o . 17

17

(18)
> (19)




(20)

(21)

(22)

(23)

(24)

(25)

In addition, we have the initial conditions for time t = 0. We will assume
that while the chute is in stable vertical motion with the speed

(26)

it is deflected laterally in the trajectory plane by a gust, or the like, by
an angle'sb and then

In the model computations, the equations (12) apd (13) are transformed in such
a way that there will be one equation each for Vy and &



4, Computation Methods

The solutions of the system of 6 differential equations were obtained us-
ing both digital and analog computers.

With respect to the digital computation we note the following:

The computations first were carried out on an IBM 650 (AVA, G5ttingen) and
this year on a Siemens 2002 of the DFL. Therefore, the usual solution method
of step integration by the Runge-Kutta method (fourth order) was used. The /8
programming was accomplished using the symbolic SOAP or HASI programming lan-

guages. The aerodynamic values CW’ CQ and CM were taken from a table as a func-

tion of the angle of attack o, and interpolated linearly. Since the interpola-

K
tion of the three functions within a Runge-Kutta interval must be carried out
four times, it is recommended that the search time be shortened using for this
purpose a specially reserved index, an indicator of the last computed place so-
to-speak, and from there on, above and below, seek the proportionately near—-ly-
ing value. In certain computations extending over greater time intervals, the
values are approximated by (fifth or sixth degree) polynomials (as direct or
indirect functions), resulting in a further saving of time without a loss of
accuracy. By trial and error, we determined suitable intervals At for attain-
ing the required accuracy. In the case of longer trajectories, the wvalue At =
0.05 sec was used, but only each 10th step was used. For increasing clarity,
and also for shortening the computation time (at the time only the Siemens 2002
with punch tape printout (60 symbols/sec) was available), the computations were
made, to be sure, with a floating point (10-digit mantissa), but also with a
fixed point with a reasonable number of decimals set aside (for example, in the
case of trajectory coordinates in meters —- 2 decimals).

Comments on Computations with the Analog Computer¥®

A PACE 231 R analog computer of Electronic Associates, Inc., was available.

For reduction of multiplication units, the aerodynamic values were used in
a coordinate system related to the body and also were approximated in part by
polynomials if the dependence on certain parameters was under investigation.
Here we even went so far, for example, as to approximate the expression Cx(aK)=

T | . N . : .
Cx( tanh Vy/VX) through a polynomial C_ (Vy/Vx) in the pertinent region.

The results obtained were accurate to about 1%. The reason for these /9
inaccuracies were lag errors of the servomechanisms (despite a quite slow com-
putation). Transformation in polar coordinates with resolvers has not proven
itself, since ox is subject to only minor fluctuations and at the same time the

*The computations on the analog computer were made through the kindness of
Herr Dipl.-Math. H. Hentschel.



limited resolving power of the sine—cosine potentiometer becomes noticeable.

As a supplementary condition, the energy equation can be introduced; this
is received by multiplying the vector equation of the translation scalar by the
velocity vector 4 and multiplying the moment equation by w and carrying out
time integration for both. This energy equation introduced as a supplementary
condition was used for improving the computations using the steepest descent
method. Here also, as a result of differentiation for s the value is approxi-

mated by a polynomial. If E is the energy, then we will have
E('t‘f‘Jt) "Ca =t

Now S = €2 must be minimized. Then we will have

C CH.‘ )
- e
de  dE -5 9E ofds
and IE - ZW ; ")Xa\ dt: )

with A being an amplification factor. For the system of differential equations,
we then have:

v - ' AR E—
Xy Xd('\) - l\c Sqn %Tu( )

that is, it is necessary to shift to the zero positions of the partial deriva-
tives using a comparator. This is in some features the essence of the steepest
descent method. These computations could generally not be carried out with the
analog computer at our disposal because the outfitting with components did not
suffice. The operation was simulated digitally using an Algol program.

5. Model Computations /10

As already mentioned, the computations were carried out for the special
personnel glide surface parachute (Figure 2) and the following data were select-
ed:

10
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Figure 2. [Caption not Visible]

The moment of inertia (radius of inertia) can be determined if the shroud
is mentally replaced by an ellipsoid of revolution of equal volume and this is
enlarged [2]; the moments of inertia are formally known for an ellipsoid.

Figure 3 shows the aerodynamic values determined from wind tunnel investigations
of models. Figure 3 shows 3 cases of different porosity (the effective poro-
sity is given as a dimensionless number, in accordance with the data given by
H. G. Heinrich in [5] for geometrically uniform chutes. In particular, in the
case of the impermeable chute (n = 0) we see that BCM/Ba in the neighborhood of
op = 0 is negative, that is, in this region the chute has no restoring moment.

As a typical result we will show a case (Figure 4) in which the chute is
stable in the entire region of angles of attack. As expected, we obtain attenu-
ated oscillations of a certain frequency. That the velocities V,Vk and Vk have

a double frequency is easy to understand if the chute is regarded as a pendulum.
The appearing minor amplitudes of oscillation of the shroud show, as also can
be seen on the trajectory curves, that the load essentially oscillates about

11



Figure 3. Aerodynamic Values for
Personnel Glide Surface Parachute.

the shroud. These values, plotted as a function of time, only in the case of
more exact study reveal deviations from the oscillation behavior of a linear
system. This becomes clearer in a phase diagram (Figure 5) in which w =& is
plotted as a function of ¥. It can be seen clearly from the time marks plotted
on the spiral that the duration of oscillation decreases with amplitude. It
also is easy to learn from the amplitude ratios that attentuation decreases
with amplitude.

Now we will consider the trajectory curves of the shroud and load (Figure
6), in which the chute is sketched in schematically at l-second intervals; thus,
we can vary the porosity (a,b,c), or with the same porosity we can vary the /11
length of the shroud lines (c,d,e). We find that with increasing porosity, the
attenuation increases, with a lesser decrease of the duration of oscillation.
The duration of oscillation increased, by analogy with a pendulum, with the
length of the shroud lines. This is shown by the values V, V , ¥ and o as
functions of time (Figure 7). Here, about 20 cases were inve$tigated and the
astonishing fact was discovered that the square of the duration of oscillation
is proportional to the shroud-load distance. This suggests the possibility of

12
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Figure 4. Example: Temporal Varia-

tion; n = 0.096, s = 9.1 m,'€% = (0.25.

representing the observed facts in an empirical formula, using the formula for
a mathematical pendulum, supplemented by a proportionality factor. If we re-
place the resistance (drag) value CWO by the stable velocity of descent Vg, we
obtain

T & .5.'2....'/'/7!61,'3.-.
U=~ Cup 2|3 ‘W‘/g

The oscillation durations computed using this formula agree well with the
model computations (Figure 7,b).

The attenuation is influenced to only a modest extent by change of the
length of the shroud lines. In the case of a stable chute, there will be a
weak maximum in the region of shroud lines of ordinary length.

The assumption concerning the entrained air mass requires further checking.
The computations carried out (Figure 8) for different mass ratios 0% with a con-

stant load show that the duration of oscillation is virtually independent of

13
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Figure 5. Example: Phase Diagram;
GL = 100 kg, n = 0.096, 0 = 0.25.

the entrained air mass. The attenuation indeed is somewhat greater in the case

of a smaller mass, but the initial deflection of the shroud also is initially
enlarged.

In all of the cases considered until now, the air density 9 has been as-
sumed constant, equal to that at the ground 9 = 90. For the motion of a para-

chute at other air densities, that is, for other altitudes, the following as-
sumptions can be made:

a) the aerodynamic values remain unchanged (that is, porosity does not change);

b) the entrained air mas%Lshould decrease in mass in such a way that the en-
trained air volume remins unchanged, that is

L =& i
’\K . S’a/IKo .
In computing a part of the trajectory, the air density again is held /12

14
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Figure 6. Example: Trajectory Curves. ﬁb = 0.25; a) s =

9.1m, n=0; b) s =9.1m, n=0.042; ¢) s =9.1m, n =
0.096; d) s = 5.1 m, n = 0.096; e) s = 13.1 m, n = 0.096.

constant. The computations show (Figure 9) that the lateral deflection of the
shroud is greater than at the ground, the attenuation is somewhat greater and
the duration of oscillation is less.

If we compare the trajectory curves for different cases in both stable and
unstable cases (Figure 10), the initial conditions are decisive for the oscil-
lation behavior. The stable chute has a vertical trajectory. In an unstable
case, with a small initial deflection, the chute is deflected further. This
results in a motion in which a lateral velocity component will be maintained,
that is, the chute is driven sideways.

Lf, perchance, we study ka, oy and fk, we see (Figure 11) that, in gen-

eral, an attenuated oscillation appears, but a stable condition of oscillation

can be attained only if the chute has reached a position in which BCM/auK is

positive. 1In this case, the course of motion was followed over 200 seconds and,
of course, the air density also was held constant here in order not to vary

still another parameter. The position for which BCMlaaK = 0 lies at ap = 0.2.

Since the lateral velocity becomes constant, the motion becomes rectilinear at
a certain angle to the vertical (about 20°).

15
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Figure 7. Example: Duration of Oscillation and Attenu-
ation. Legend: a = On the Basis of the Empirical Formula.
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Figure 8. Example: Angle of Inclination of Trajectory for Differ-
ent Entrained Air Masses; Uy = 0.6; bg = 1.0; . He = 1.4,
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Figure 9. Example: Angle of Inclination of Trajectory for

Different Altitudes. H =0 km, bg = 1.00; ~——— H = 2 km,
Mg = 0.822; - - H =6 km, He = 0.538; ... H =10 km, Hg = 0.338.
6. Summary

The computation of numerous examples of a special type (numerically about
80 cases were considered) shows that the oscillations of a parachute show a
certain typical type of behavior which is characteristic of nonlinear oscilla-
tions. A qualitative agreement with experiments was achieved in a number of
respects. Quantitative comparative investigations still could not be carried
out because until now it still was not possible to carry out drop experiments
with chutes of the considered type.

In addition to the information which the experimenter obtains on dif- /13
ferent properties of parachute oscillation, it appears to be particularly im—
portant that this is a case where for the investigation of the dynamic behavior
a nonlinear computation is the only approach which can give an unobjectionable
description of the process. The available experimental data, such as wind tun-
nel measurements for asymmetrical chutes in 6 components, measurements of the
entrained air mass, etc., should be used in further broadening of theoretical
investigations.
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Figure 10. Example: Tra-
jectory Curves. GL = 1,000

kg; n = 0; a) Sb = 0.40; b)

\‘}0 = 0.10; ¢) \‘}0 = 0.10.

Figure 11. Example: n = 0,
= 0.10.
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